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In the majority of problems connected with the dynamics of a 
liquid containing gas bubbles, the nature of the pulsations of indi- 
vidual bubbles has great significance. In many cases the additional 
pressure field established by these pulsations is the deciding factor in 
determining the overall state of the medium containing the bubbles. 
In what follows we consider some properties of the pulsations of a 
spherical gas bubble in compressible and incompressible liquids. 

1. The motion of the wall of a spherical bubble in an incompress- 
ible fluid is governed by the following equation (viscosity is not taken 
into account): 

R R "  -4- 3/21g'~ = ( P  (R)  - -  P (t)) / p.  (i .i) 

Here P(R) is the pressure inside the bubble, P(t) is the applied pressure, 
p is the density of the liquid, and R is the radius of the bubble; a dot 
indicates the total derivative with respect to time. For P(t) = const, 
and on the condition that the bubble be compressed adiabatically, 
it is easy from Eq. (1.1) to obtain 

( R o t R , )  av-a = t + A (V - -  t) (A = P/Po)  (1.2) 

(where y is the adiabatic exponent, R. is the minimum radius of the 
cavity, R 0 is the initial radius, P0 is the initial pressure in the bubble), 
and to determine the compression time of the cavity 

, = o .9 t5Ro K o T ~ .  (1.3) 

However, we usually have to deal with pressure essentially as a 
function of time. In this case neither the time nor degree of bubble 
compression can be determined directly from (1.1). 

In [1] the results are presented from numerical solution of Eq. (1.1) 
in dimensionless form 

d2y 3 (dy~ 2 _ I t  i _Ae-Z) 

= �9 

Here I/is a dimensionless parameter which determines the ratio 
of the time constant for pressure decrease to the characteristic time 
of bubble compression by the constant pressure P0. The calculations 
are given for the case of waves with an exponential profile with 
A = 10, 100, and 1000 while ]1 varies from 0.01 to 1000. The analysis 
shows that the pulsation of a bubble under pressure with various values 
of 7 obeys a definite law 

(t2"1"r = (1.2-- k ~ - ~ - ~  / ~i) k (l~l/~t2)'/2(tl*/'fl). (1.4) 

Here tr is the required time of bubble compression for waves with 
a time constant of r 2 when tt  is known for a wave with equal ampli- 
tude but a time constant of r I (the pressure in the wave front enters 
into Eq. (1.4) by means of If).  Superscript k is determined from the 
condition 

lO ~ = ( ~ q " ' .  (I.5) \Vel 

We see from (1.4) that the connection between the times of bubble 

compression by pressure waves with various values of r is determined 
to within a constant coefficient by the square root of the ratio of the 
dimensionless parameters I/which are characteristic of these waves. 
If we know the time of bubble compression by a wave with constant 
pressure behind its front, expression (1.4) enables us to calculate, 

for example, the time of bubble compression by a wave of the 
same amplitude but with very small 7, while Pl is chosen so as to 
satisfy (1.3). 

Another characteristic of a pulsating bubble is the minimum 
compression radius. The connection between the minimum radius, 
pressure amplitude, and characteristics of a constant-pressure wave 
can, by analogy with expression (1.2), be written in the form 

'R ~a~-3 btA2 ( T _  1) (1.6) 

Clearly, this expression passes to (1.2) as p -~ % i.e., for waves 
with constant pressure behind the wave front. 

Values calculated from Eqs. (1.4) and (1.6) for various A and p 
(R0 = 1 cm) are given in Tables i and 2, where they are compared 
with data from [1] (in the tables the results of machine calculations 
are denoted by a subscripted i and those made from relations (1.4) 
and (1.6) by a subscripted 2). Expressions (1.4) and (1.6) are quite 
suitable for making approximate estimates of the basic characteristics 
of bubble pulsation in an incompressible fluid under a pressure which 
varies greatly with time. 

2. Limitation of the discussion of bubble pulsations to the ease of 
an incompressible fluid leads to a considerable discrepancy between 
the observed and calculated pulsation characteristics when we consider 
eases in which the cavity walls reach a velocity on the order of the 
speed of sound. This occurs, for example, in problems of cavitation 
and its accompanying phenomena. When the theory of the collapse of 
empty bubbles was first formulated it was concluded that compressibil- 
ity had to be taken into account, in view of the enormous velocities 
and pressures encountered as a result of collapse. The same thing is 
observed in the compression of a gas-filled cavity under very high 
pressure. We consider the spherically symmetrical problem of the 
pulsation of a gas bubble in a compressible nonviseous fluid. The 
particle velocity U O) is replaced by the velocity-potential gradient ~, 
and the system of equations is written as 

o~ (--V(P) + (U ~ )  U 
P 

t dp 
v u = - 7 -  d-Y" (2.~) 

Here P is the pressure and p is the liquid density. Integration of 
(2.1) yields 

P 
O~ v ~ I d P  h 
Ot -} 2 ,, p - -  " 

(2 
poe 

if h is the enthalpy difference between point r and infinity. It is 
assumed that P~o is constant at infinity, that the velocity and the 
velocity potential vanish at infinity, and that p is a function of 
pressure only. When 

1 ( ,  5 )  (2B) cp=7-1 -- 

we have 

r (h + 1/2UD = l '  (t - -  r / C ) .  (2.4) 

Equations (2.3) and (2.4) show that rq and r(h + (U2/2)) are 
propagated with velocity C (local speed of sound), in the acoustic 
approximation. Kirkwood [2] made the assumption that r(h + (U2/2)) 
is propagated with a velocity C + U, on the basis that liquid velocities 
can attain values on the order of the speed of sound. In view of the 
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T a b l e  1 

A ~ 7 % sec (R*/Ro), (R*/Ro)2 
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0.0294 
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0.00302 
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A y. "~ "~, see h*/'~, tt*[xj 
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assumpt ions  m a d e  [3, 4] we wr i te  

0 [r h A- ~21l (2.5)  

ne ighborhood  of the point  of co l l apse  the  behav io r  of the  c a v i t y  wa l l  

a c c o r d i n g  to K~rkwoed's  a p p r o x i m a t i o n  depar ts  f rom Hunte r ' s  resul t  

to the s ame  ex t en t  as in the incompress ib l e  c a s e .  Repea t ing  these  

cons idera t ions  for the acous t i c  ease ,  we h a v e  

Expanding E q . ( 2 . 5 )  wi th  

dU Oh OU 
dt Or ' Or -]- 

2U t dh 
r 

-aT 4- u T F  ) , 

C z dt 

( e . 6 )  

we ob t a in  the l aw  gove rn ing  the m o t i o n  of the wa l l  of a gas bubb le  

3 (I t R" 

"0+4:) (2, = + - - g -  

We must ,  however ,  exp l a in  to w h a t  degree  the e q u a t i o n  ob ta ined  

(g .? )  corresponds to the  e x a c t  equa t ions  of f low (2 .1) .  C l e a r l y ,  to  

def ine  most  fu l ly  the  a p p l i c a b i l i t y  of Ki rkwood ' s  a p p r o x i m a t i o n  

we must  cons ider  the case  of  compress ion  of an  e m p t y  c a v i t y .  This  

enables  us to i nves t iga t e  the  behav io r  of the  func t ion  ob ta ined ,  and 

to do so wi th in  a wide  r ange  of ve loc i t i e s  of the  c a v i t y  wa l l  ( f rom 

0 to ~), 
The n u m e r i c a l  i n t e g r a t i o n  of Eqs. (2 .1)  p e r f o r m e d  by  Hunte r  [5] 

for  a sphe r i ca l ly  s y m m e t r i c a l  e m p t y  c a v i t y  in  wa te r  r e v e a l e d  [ the  

ex i s t ence  o f ]  l a r g e  f low ve loc i t i e s  c lose  to the  po in t  of c o l l a p s e .  

It was found tha t  in this ease  the radius  of the c a v i t y  was p ropor t iona l  

to ( - - t )  n ( t  = 0 is the m o m e n t  of co l l apse ) .  The  f low in the  n e i g h b o r -  

hood of the point  of co l l apse  is descr ibed  b y  a s e l f - s i m i l a r  so lu t ion  

f rom which  the q u a n t i t y  n is d e t e r m i n e d .  In [5, 6] n was found equa l  

to 0 .5552 .  Wri t ing Eq. (2 .7)  for the case  of an  e m p t y  c a v i t y  ( i . e . ,  

set t ing C = const  and H = eonst) ,  we ob t a in  

3 R . ~ (  t t R" R" , , , ,  

Hence  

R / --~ - - 1 1 \  C / j "  

Subst i tut ing Hun te r ' s  so lu t ion  [5] in the fo rm R ~ At n in to  F_q. 

(2.9), we ob t a in  the v a l u e  of n as t --~ 0 wi thout  d i f f i cu l ty .  It is equa l  

to 0 .666 .  For the case  of an  incompress ib le  f lu id  n = 0.4,  i . e . ,  in the 

R R '  ( t  2t/" 3 B .=(  { 4 
+ T )  + ~- - - ~ - g )  = 

RH" / R" R "e ) 
= H q- - - ~  ~ l - -  ~ -  -}- --Og- , (2.*0)  

w h i c h  y ie lds  a va lue  of n = 0.5 in the  case  of an  e m p t y  cav i ty ,  i . e . ,  

the  e x a c t  so lu t ion  l ies  b e t w e e n  the acous t i c  case  and  Ki rkwood ' s  

i 

/8 

Fig .  1 

c a l c u l a t i o n s .  It should be  no ted  tha t  Eq, (2 .10)  is just  H e r i n g ' s  [2] 

equa t ion ,  a l t hough  the l a t t e r  was ob t a ined  in a w a y  d i f fe ren t  f rom 

tha t  desc r ibed  above .  F rom the  va lues  of n o b t a i n e d  we c a n  c o n c l u d e  

t ha t  the p r o p a g a t i o n  v e l o c i t y  of the q u a n t i t y  r ( h  + U z / 2 ) l i e s  beVeeeen 

C and  C + U. We shal l  a ssume t h a t  p r o p a g a t i o n  occurs  wi th  a v e l o c i t y  

C + a U ,  where  c~ = cons t .  In this case  we h a v e  

3 c~ A/R'l -V"~'- ' / ' )  
(-~)~=[1+2--7;(~)'][1+(~-3/ c~ . (~m) 

Subst i tu t ing  R : At ~  in to  this e q u a t i o n  we ob t a in  the v a l u e  of  a 

in the ne ighborhood  of the  po in t  of  co l l apse  (for  an  inf in i te  wa l l  

ve loc i t y )  wi thou t  d i f f icu l ty ;  it  is e q u a l  to 0 .57 .  Analysis  of  the  b e h a v -  

ior  of Eq. (2 .11)  for  var ious  va lues  of R ' /C  shows tha t  to some degree  

of a p p r o x i m a t i o n  (a t  e a c h  m o m e n t  the  v a l u e  of (x cor respond ing  to 

H u n t e r ' s  cu rve  was found)  a is a m o n o t o n i c a l l y  dec r ea s ing  f u n c t i o n  

of R ' /G ,  wh ich  var ies  b e t w e e n  1 and 0.57 as R --~ 0. H o w e v e r ,  this 
does not  e x c l u d e  the poss ib i l i ty  of  desc r ib ing  the process  of c o l l a p s e  

a p p r o x i m a t e l y  by  m e a n s  of  some  cons t an t  v a l u e  of  a .  It should be  

no ted  tha t  Eq. (2 .11)  is qu i t e  c o n v e n i e n t ,  s ince  for  var ious  va lues  

of  c~ it c a n  pass to Ki rkwood ' s  e q u a t i o n  (c~ = 1), to the  e q u a t i o n  for 

T a b l e  3 

--R'/C (R/R.), (R/Ro)z (R]Ro)a (R/Ro),t (R/Ro)6 

t .46 
2 .05 
2 .50  
2 .93 
3 .56  
4 .00  
4 .62  
5.5{) 
6 .88  
9 .50  

t t .  3() 
t 9 . 5 0  
5(). ()0 
80.(~0 

~(X).00 
20{). 00 
3OQ.(x) 
400.0O 
500.0o 
60{). 00 
700.00  
80o .oo  
900. O0 

t 0 0 0 . 0  
t 0 0 0 0 . o  

t 0 0 0 0 0 . 0  

t . 4 8  '10 -2 
t . 00  10 -= 
7.84  t0  -a 
6 .42  t0  -'~ 
5 .00  t0  -a 
4 .27 10 -3 
3 .56  I 0  -a 
2.85  t0  -a 
2 .14  10 -a 
t . 4 3  t 0  -8 
1 . t 4  t0  -s 
5 .70  I0 -4 
"1.72 t0  -4 
9 .42  t0  -~ 
7 .16 10 -5 
2,97 t 0  -5 
1 .78 t0  -~ 
t .24  ~(V~ 
9.27  t0-6  
7 .37 10 -6 
6 .06  t 0  -e 
5 . t l  t() -~ 
4 .38  lf)-~ 
3 .85  t0-~ 
2.07 i0-~ 
t . 1 t  10 -8 

t . 4 t  t 0  -2 
9.56 10 -a 
7 .48 10 -a 
6 .08 t() -3 
4 .66  10 -3 
3 .97  10 -a 
3 .22  10 -'~ 
2 .49  10 -a 
t . 7 5  t0  -a 
1.{)3 10 -a 
7 .66  10 -4 
2 . 9 t  t0  -~ 
4 .90  10 -a 
2 . t 0  t0  -~ 
t . 3 4  t0-~ 
3 .33  t 0  -6 
t . 49  t 0  -~ 
8 .40  10 -7 
5 .33  1() -7 
3 .72  10 -7 
2 .72  10 -v 
2 .09  10 -7 
1.65 t0  -7 
1.34 I0-'; 
t . 3 4  10-~ 
t . 3 4  10 - n  

1.68 10 -a 
t . 2 4  10 -~ 
t .{)3 10 -2 
8.9{) 10 -3 
7 .40  I0  -a 
6 .62 t 0  -a 
5 .80 t0  -a 
4 .90  t0  -a 
3 .94  t0  -a 
2 .96  t0  -a 
2 .44 10 -a 
1 .43 t0  -a 
5 .62  t0  -4 
3 . 5 l  t 0  -4 
2 . 8 t  10 -4 
t .41  t{) -4 
9.4(} 1() -5 
7 .02 t(~ -5 
5.6() t 0  -5 
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4.01 10-5 
3.52 ~0-5 
3.13 I{) -5 
2.82 i() -5 
2.82 I0 -6 
2.82 10 -7 

1.54 t0  -~ 
t . t 0  t 0  -~ 
8 .92  t 0  -a 
7 .55  t 0  -a 
6 .10  t 0  -3 
5 .37 t 0  -a 
4 .56 t 0  -'a 
3 .73  t0  -3 
2 .87 t0  -a 
1.96 t0  -8 
1 .59 t0  -3 
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8 .93  t() -G 
7.5~) t0-* 
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1.44 10 -a 
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6 .92  t 0  -4 
5.7{) t0  -4 
4.9(1 10-4 
4 .35  t0  -4 
3 .94  t0-4 
3 .58  t0  -4 
3 .33  t0  -4 
3. t0  10 -4 
6 .60  t() -~ 
t . 4 4  10 -5 
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Fig. 2 

the acoustic approximation (a  = 0), or to any other intermediate 
equation. 

Table 3 gives results for the following cases: 
(1) Hunter's numerical integration of the equations of the flow; 
(2) calculations on Kirkwood's assumption from the equation 

= ' 

3 C J ; (2.12) 

(3) calculations of the acoustic variant 

3 C 2 
-- 3- --C-I; (2.13) 

(4) calculations on the assumption that the propagation velocity 
is C + 0.6 U 

C ~ / B" ~27 C B'7~-sz 
(2.14) 

(5) calculations for an incompressible fluid 

3 c~ (R' I~ 1 
( ~-c)~ = [ , + ~ - _ ~ ,  c j J (2.15) 

The quantity R ' /C as a function of R/R0 is shown graphically in 
Fig. 1, as developed from tbe data of the table. We note that Kirkwood's 
assumption is valid for R~C on the order of unity or less [7], but that 
it is not satisfied for high velocities. This is quite reasonable when 
we remember that the velocity C + U is valid for the two-dimensional 
case. The acoustic variant also exhibits a fairly marked departure 
from Hunter's curve, and in the region of R'/C from 1 to 10 is much 
more at variance with the exact data than Kirkwood's curve. The 
arbitrary coefficient a introduced into the propagation velocity 
enables us to make some estimates about the behavior of the quantity 
C + U as the velocity of the bubble wall increases. 

The results obtained were taken into account when we calculated 
the pulsation of a spherical bubble, 1 cm in diameter, under a sud- 
denly applied constant pressure with an amplitude which varied in the 
range from l0 [o 18 000 aim. An air bubble with an initial pressure of 
1 atm was considered. Equation (2.?) was calculated on an electronic 
computer. The equation of state for water was taken as given in [2]. 
Results of the calculations are given in Fig. 2. The numbers correspond 
to the pressure amplitudes in a t m -  18000, 9000, 8000, 1000, 800, 

600, 400, 200, 100, 80, 60, 40, 20, and 10. The dashed straight line 
joins all first pulsation minima, It can easily be established from the 
graph that R*/R 0 is directly proportional to the compression time of 
the cavity: 

It* / H o = Att, + 0.025 . (2.16) 

The compression time t,  is fairly accurately specified by expres- 
sion (1.3), while A = (5/3)103 see -t  is easily found from the graph. 

Some experiments were performed in a hydrodynamic shock tube 
to determine air-bubble pulsations at pressures of several hundred 
atmospheres with a weakly varying pressure behind the [shock] front. 
A description of both the experimental procedure and the apparatus 
is presented in [8], where the characteristic development of bubble 
pulsation with time is also given. The data for the degree and time 
of compression correspond to the calculations. 

In conclusion, the author wishes to thank L. Trokhan for help 
in the computer calculations. 
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